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Analysis of Dielectric Resonator Cavities
Using the Finite Integration Technique

JOVAN E. LEBARIC, MEMBER, IEEE, AND DARKO KAJFEZ, SENIOR MEMBER, IEEE

Abstract —Resonant modes in shielded dielectric resonators are studied

by a numerical technique which yields the resonant frequencies, modal

field distribution, and Q factors of various resonant modes, including the

hybrid modes. The technique employs field discretization by virtue of dual

electric and magnetic grids and allows for a direct numerical solution of

the integraf form of Maxwell’s equations for specified bounda~ condi-

tions. The details of the matrix formulation are explained on an example

of the cavity subdivided into a grid consisting of 3 X 3 electric cells. A

modal field plot exhibiting a spirafing behavior has been observed.

I. INTRODUCTION

R IGOROUS NUMERICAL solutions for the electro-

magnetic field inside resonant cavities containing di-

electric resonators have traditionally been obtained by the

mode-matching procedures, and more recently, by the

finite-element procedures. A review of most frequently

used procedures can be found in [1]. The present paper

will describe an alternative procedure, called the finite

integration technique (FIT), which is particularly conve-

nient when the cavity volume is filled with inhomogeneous

dielectrics. The procedure has a similarity to a finite differ-

ence method, such as that used in [2], but has the advan-

tage that the interface between different dielectric media

does not require any special programming considerations.

The FIT is a numerical technique for direct solution of

Maxwell’s equations [3]–[6]. The technique is based on the

integral form of Maxwell’s equations for time-harmonic

electromagnetic fields in lossless linear media:

(1)

(2)

(3)

(4)
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supplemented by the constitutive relationships:

5=62 (5)

z= pi?. (6)

The permittivity e and the permeability p of linear,

isotropic media are scalar functions of position. The equa-

tions (1) to (6), subject to the perfect-electric-conductor

boundary conditions, constitute the boundary value prob-

lem to be solved numerically, for the specified geomet~

and media distribution. Extensions to domains with small

media and wall losses can be made using standard pertur-

bational techniques [7].

This paper describes the systematic discretization of

Maxwell’s equations which leads, for source-free domains

involving isotropic media, to an equivalent standard alge-

braic eigenvalue problem. The FIT solution is inherently

free of nonphysical, “spurious” modes, known to plague

the finite element solutions [8], since the divergence equa-

tions are incorporated into the eigenvalue problem formu-

lation from the onset.

As the resonant frequencies of the lossless cavity are

obtained from the real eigenvalues, arranged in ascending

order, there is no danger of overlooking one of them. In

the mode-matching technique, it is known that some of the

resonant frequencies may be overlooked, if the complex

modes are not included [9].

An important convenience of the FIT is the freedom of

rearranging the distribution of dielectric materials within

the cavity by simply modifying the input data of the

computer program.

II. VOLUME AND FIELD DISCRETIZATION

The simultaneous volume and field discretization is

specifically tailored for Maxwell’s equations by defining
“dual” electric and magnetic grids. The use of dual grids

[10] provides for the coupling of the electric and magnetic

fields, expressed by the curl equations of Maxwell.

The cylindrical coordinate system (r, $, z ) is a natural

choice for problems with rotational symmetry, noting that

this property implies here not only the rotational symme-

try of the problem geometry but also the invariance of

media parameters with the angle of azimuth +. Fig. 1

illustrates two adjacent elementary volume cells, one elec-

tric and one magnetic, and their respective field nodes. The
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Fig. 1. Relative position of an adjacent electzic and magnetic cell.

two cells, each representing its respective grid, are spatially

shifted by Ar/2, A4/2, and Az/2. The permittivity c is

considered constant within an electric cell, but may vary

from one electric cell to another in an arbitrary manner.

Field components are assigned to field nodes, residing at

the centers of their respective cell sides: electric field

components to the electric cells and magnetic field compo-

nents to the magnetic cells. All nodal field components, as

evident from Fig. 1, must have one of the three coordinate

directions, that is, must be r-directed, @directed, or z-

directed. The electric and magnetic fields are thus, by

virtue of dual grids, simultaneously “sampled” and re-

solved into their orthogonal components. Also, the conti-

nuit y of tangential field components across the dielectric

interface is automatically imposed because the field com-

ponents are shared by the adjacent volume cell, which may

represent a different medium.

III. MODAL EXPANSION

A three-dimensional interior electromagnetic boundary

value problem with rotational symmetry can be reduced to

an equivalent two-dimensional problem using Fourier se-

ries expansion with respect to the angle of azimuth @.

Linear combination of harmonic functions must be used

for anisotropic media to accommodate the coupling of

“degenerate” modes [11], while it is sufficient to use only

one harmonic function, either sine or cosine, for isotropic

media and uniaxial anisotropic media. For the later two

the solution may be written as [5]

~=o
,

+&Z~@(r, z)sin(rn@) +2&=( r,z)cos(nz@)] (7)

E(r,@,z) = ~ [?ll~r(r,z )sin(rm$)
mz=o

+$~n,+(r,z)cos(mo) +f~m,(r,z)sin(~$)]. (8)
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The above expansion is referred to as the modal expansion

and the integer m is referred to as the mode index. The

main benefit of’ this expansion is the ability to integrate

analytically with respect to the angle of azimuth o and

thus reduce the original three-dimensional problem to an

equivalent two-dimensional problem.

IV. DISC~TIZATION OF CUI{L AND DIVERGENCE

EQUATIONS

The integral forms of the curl cq~ations g Maxwell (1)

and (2) involve line+ integrals of E and H and surface

integrals of ~ and D. The surface of integration is a cell

face, its circumference being the contour of integration for

the corresponding line integral. Integral forms of the diver-

gence equations of Maxwell (3) and (4) involve surface

integrals over the closed surfaces of elementary volume

cells.

Discretization of the line integrals is based on the as-

sumption that a field does not var:~ extensively along a side

of a cell in either radial or axial direction, and thus can be

approximated as being constant and equal to the field

nodal value at the center of that cell side (piecewise-con-

stant approximation). The surface integrals are discretized

assuming that the flux densities do not vary over the

respective cell faces, in either the radial or the axial direc-

tion, but they do vary, in the prescribed harmonic fashion,

with the angle of azimuth @

The curl equation (1) for the shaded electric cell face

(r. = const “plane”) in Fig. 1 cart be discretized in the

following manner:

AzEz(r, z)[cos(m@o+ mA@)-cos(m@o)]

+ r[l?q(r, z – Az/2)– E@(I’, z + Az/2)]

‘J
‘O+ A+sin(m+) drp

%

= – @Az(l/2)[p(r, z – Az/2)+p(r, z+ Az/2)]

.rH,(r, z)/oO+A+sin(m$) dq$. (9)
%

After the analytic integration has been carried out and the

common terms have been canceled, the following expres-

sion is obtained:

rl?o(r, z – Az/2,)– rll~(r, z + Az,\2)– AzmEZ(r, z)

= – jtiAzrp,(r, z) H,(r, Z) (10)

where the “averaged” media parameter has been intro-

duced:

P,(r, z) = (1/2) [p(r, z–Az/2) +p(r, z+ Az/2)].

(11)

Following the same procedure, the curl equation (1) can be

discretized for the electric cell faces in @= const and
z = const planes.
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For @= const planes,

Ar[E,(r, z+ Az/2)-E,(r, z- Az/2)]

+Az[E,(r –Ar/2, z)– Ez(r+Ar/2, z)]

—––jtiArAzp@(r, z) H@(r, z). (12)

For z = const planes,

ArmE,(r, z)+(r + Ar/2)Eo(r + Ar/2, Z)

-(r- Ar/2)E+(r-Ar/2z)

—––joArrpZ(r, z) Hz(r, z). (13)

The discretized equations for the curl equation (2) are

obtained by duality, resulting in three additional equations

for the components of the magnetic field intensity.

Discretization of the divergence equations requires the

expressions for the surface integrals over the six faces of

electric and magnetic cells. These integrals have already

been obtained for the right-hand sides of the discretized

curl equations. Adding them algebraically with the refer-

ence direction into the cells, one obtains from divergence

equation (3) applied to the magnetic cells

rrzArAzc@(r, z) E@(r, z)+ Az[(r-Ar/2)~, (r- Ar/2, z)

.E,(r– Ar/2, z)–(r+Ar/2)c,(r +Ar/2, z)

.E:(r+Ar/2, z)]+ Arr[c=(r, z–Az/2)

-EZ(r, z–Az/2) –cZ(r, z+ Az/2)E,(r, z+ Az/2)]

= o. (14)

A similar relationship can be obtained for the components

of the magnetic field by applying divergence equation (4)

to the electric cells. After rearran@ng, the @-directed field

components can be expressed in terms of the radial and

axial field components:

–1

[

r – Ar/2
E@(r, z)= c,(r– Ar/2, z)

nzco(r, z) Ar

r + Ar/2
.Er(r– Ar/2, z)– Ar c,(r+Ar/2, z)

.E,(r + Ar/2, z)+ fic=(r, z – Az/2)E2(r, z – Az/2)

— &t=(r, z + Az/2)EZ(r, z + Az/2) 1 (15)

H+(r, z)

–1

[

r – Ar/2
—

mp+(r, z) Ar
p,(r– Ar/2, z) H,(r– Ar/2, z)

r + Ar/2
—

Ar
p.(r+Ar/2, z) H,(r+Ar/2, z)

+ ~p,(r, z – Az/2)H:(r, z – Az/2)

1–~pz(r, z+ Az/2)HZ(r, z+ Az/2) . (16)

The physical meaning of the last two equations is that the

Fig. 2. Discretization of a cawty using (3x 3) electric cells. Note that

each cell is filled with different dielectrics.

field components for any given cell are not all indepen-

dent, and may not be treated as such, if the divergence

equations are to be satisfied as well. The above equations

are referred to as the zero-divergence condition, since the

divergence equations for media free of charges have been

used. Imposition of the zero-divergence condition will be

accomplished by eliminating the @-directed fields from the

curl equations and formulating an algebraic eigenvalue

problem in terms of radial and axial field components

only. In this manner, the total number of unknowns is

reduced by about one third.

Discretized curl and divergence equations are further

simplified if uniform discretization grids are employed:

Ar = Az = Al. Introducing the normalized radial distance

r = r/Al, and the normalized angular frequency o.:

tiAl
un=—

c

the following identities are obtained:

ci)Alpo=un Zo

where ZO and YO are the intrinsic impedance

tance of free space.

(17)

(18)

(19)

and admit-

V. MATRIX FORMULATION

The matrix equations are probably best introduced by

means of an example. To this purpose a cylindrical con-

ducting cavity with radius equal to its height, discretized

using three electric cells in the radial and three electric
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cells in the axial direction, is given in Fig. 2. Each electric

or magnetic cell has been assigned a different relative

permittivity or permeability. Also indicated in the figure

are the positions of the electric and magnetic nodal field

components. The boundary conditions on the perfect elec-

tric conductor are imposed by setting the tangential elec-

tric and normal magnetic field components to zero at the

metallic boundaries. The conditions for the field compo-

nents on the axis of symmetry (z axis) are determined by

the field periodicity with the angle of azimuth +. For the

modes with m = O (no field variation with ~), the r-

directed field components on the z axis must be zero,

whereas for the modes with m >0 the z-directed field

components on the z axis must be equal to zero.

Algebraic equations representing the discretization of

the curl and divergence equations can be written for this

3 X 3 cavity as follows. From curl equation (2), for r = const

I
–1 o 0 1 0 00

0 –1 o 0 1 00

0 0 –1 o 0 10

0 0 0 –1 o 01

0 0 0 0 –1 00

0 0 0 0 o–lo

1/2

o

0

0

0

0

0

0

0

00

3/2 O

0

0

0

0

0

0
0

i-m

5/2

o

0

0

0

0

0

Hzl

H,z 1

0
0

0
1/2

o

0

0

0

0

HZ3

HZ4

I

= jti.YO

H=5

HZ6

“1
o (~,+~5)/2
o 0

0 0

0 0
0 0

0 0-
00

00

00

10
0 1.

0

0

0

0

3/2

o

0

0

0

0

0 5/2

00

00
00

1/2 o

0 3/2

00

00

00

00

0

0
(E3/66)/2

o

0

0

1
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planes, one obtains

(1/2) H,, - (1/2)H+1 + roll,,’= @.Yo(l/2)~13,1

(3/2) Ho, - (3/2)lf@, + roll=, ==jti.yo(3/2)~Er2

(5/2)Ho6 - (5/2)H$3 + m% ==j~#i,(5/2) ~Er3

(1/2)H,7 - (1/2)H,3 + mH., ==jQ.y,(l/2) ~Er4

(3/2)H,8 - (3/2)H,5 + mH.5 =’ jLLy,(3/2) ~&

(5/2)H+9 - (5/2)H,6 + mH,6 ==jti.YO(5/2) ~E,6.

(20)

This system of equations can also be written in the matrix

form:

o 0 o“

000

000

000

000

000

[/2 o 0

0 3/2 O

0 05/2

000

000

5/2 O 0

0 1/2 o

0

0

0

0 1
00 3/2 O

000 5/2 1

0 0 0

H
E,l

o 0 0 Erz

o 0 0 E,3

(E, +67)/2 o 0 Er4 “
(21)

o (%+%)/2 o ‘1.5

o 0 ((6+ E9)/2 ’76
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In a compact notation, (21) becomes

C:,qho} + n’lhz) = .@nyoww(rler) (22)

where the boldface symbols denote square or rectangular

matrices with real elements, and the symbol I ) denotes

column matrices with real elements. Likewise, the curl

equation (2), written for @= const and z = const planes,

results in

C:lhr) + C}+lhz) = j%yo~,+le+) (23)

– mlh, ) + C~zD.!l~@) = j“nyODrY{zlez). (24)

Proceeding in an analogous manner, curl equation (1)

results in

C;rDjle@) – role:) = – j~.%D~,Dp,lh,) (25)

C;ole,) + C;+lez) = – j~n.ZODpJAJ (26)

‘D Ihz). (27)m Ier) + C&Dr~le@) = — j“%zoDTZ PZ

Three classes of matrices are recognized in (22) to (27):

connection matrices C***, representing the discretization

of line integrals; diagonal position matrices D$*, repre-

senting the radial distances of nodal field components; and

diagonal media matrices D**, representing the averaging

of media parameters for adjacent cells involved in dis-

cretization of surface integrals.

In an analogous manner, the divergence equations (3)

and (4) result in the following two matrix equations:

mDc+le+) + Cr:D:rD,,le,) + G~D:D,,le,) = o (28)

nzDp#zJ + C~D:DP,\h,) + cz@r@pzlL) = 0. (29)

For cavities which do not contain magnetic materials, the

media matrices Dpr and Dpz are replaced by the scalar po.

Likewise, for the air-filled cavities, D<, and D,, are re-

placed by [.. The connection matrices for the divergence

equations are related to the connection matrices for the

curl equations, as shown in [11]. The example in Fig. 2

there are only (3X 3) electric cells, but any larger number

of cells can obviously be formulated in like manner, result-

ing in matrix equations of the same form as (22) to (29).

VI. EIGENVALUE PROBLEM FORMULATION

The first step toward the electric field formulation is to

express the magnetic field vectors in terms of vectors of

electric field components, from equations (25) to (27):

Ihr) = ~ ‘1 DP;l(D,! )-’[c;r~:+)- role=)] (30)

(31)

The above is next substituted into (23) and (24). The

resulting expressions involve the vector of @directed elec-

tric field components, which can be expressed, from the

zero-divergence condition (28), in terms of the radial and

axial electric field vectors to give the following partitioned

matrix equation:

{F!12:l-o;[~::’l@of’33)
Matrices A:. are defined as follows:

A:, = C&D;D~’C~ + m2D;’(D:)-1- u’D’D (34)n 7?’ e?

A;= = C;, D,: DP<lC’@ (35)

A:, = C:ZD;;D&,lCe (36)

A;z = C:ZD:DfilC: + m2D;1(D:)-1- ti:D;Dc2. (37)

Equation (33) is recognized as the standard eigenvalue

problem if written in one of the following forms:

[A’- u~D’] Ie,,) = o (38)

or

[( DG)-lAe-c#]le,z)=O. (39)

The resulting matrix is very sparse, with at most nine

elements per row, regardless of the matrix size.

A dual procedure can be carried out for the magnetic

field formulation. The result is a standard algebraic eigen-

value problem of the form

[A’- ti:D’]lkrz}=o (40)

or

[( D~)-IA~Z –ti:I]lA,=)=O. (41)

The two eigenvalue problem formulations for m >0
modes are redundant, in the sense that the curl and diver-

gence equations can be used to recover all of the field

vectors once either radial and axial electric or radial and

axial magnetic eigenvectors have been obtained.

An eigenvalue formulation for the modes with no field

variation along the angle of azimuth @ (modes with m = O)
can be obtained from the curl equations only, without use

of the zero divergence condition. The TEO cavity modes are

obtained from the following eigenvalue problem:

[A&u~I]leO)=O (42)

with matrix A ~ given by

A;= D,~lC:Dp;l(D; ) - lC;rD:O

+ %iwwlz’(z) -’%% (43)

A dual procedure yields the eigenvalue formulation for the

TMO modes:

[A:- c@]pz+) =0 (44)

A;= DP;lC;D<;l(D:,) “C;yD;

+DfilC:@D;l(D;) -lC; D:+. (45).-

Therefore for a given number of nodes in a particular

cavity, modes with m = O are obtained by solving a matrix

of half smaller size than the one for mode with m >0.
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TABLE I
NUMBER OF ELEMENTSIN THEFIELD EIGENVECTORS,WHEREMIS THE

NUMBER OF RADIAL CELLSAND N IS THE NUMBER OF AXIAL CELLS

~~1
m=o m>O
modes modes

I er> M(N - 1) M(N - 1)

Ie > (M-l) (N-1) (M-l) (N-1)

I e=> MN (M - l)N

Ihr> I (M - l)N MN I
]h > MN m“

]hz> K(N - 1) M(N - 1)

p- 17(-1,8%) +

I
Fig. 3. Discretization of the cavity used in experiments, and the corre-

sponding percentage errors.

To illustrate the size of the resulting matrix problem, we

consider a cavity with M electric cells in the radial direc-

tion and N cells in the axial direction. The corresponding

number of elements for the electric and magnetic field

vectors is given in Table I. For the example from Fig. 3,

M =17 and N = 31, Ie@) vector has 480 components, so

that the matrix which must be solved in the case of the

TEO modes is 480X480. For any of the hybrid modes with

m >0, the matrix size for the same cavity increases to

1037 x 1037.

When the numerical solution of the eigenvalue problem

has been obtained, the eigenvalues yield the resonant fre-

quencies of the modes, and the eigenvectors contain the r

and z components of the field. Typically, only the lowest

five to ten modes for each m are of practical interest.

The field lines of the various resonant modes are plotted

on an x – y plotter controlled by a personal computer

using the procedure described in [12]. Knowledge of the

field distribution in the cavity allows a detailed computa-

tion of the unloaded Q factor, taking into account the

dielectric losses as well as metal wall losses.

VII. MODE NOMENCLATURE

The eigenvalue formulation inherent in the finite inte-

gration technique provides an opportunity of a mode

nomenclature for resonant cavities with rotational symme-

try, containing the dielectric resonators, in a straightfor-

ward way. Until now, a number clf authors have attempted

miscellaneous notations, but ncne have been generally

accepted. For hybrid modes (m:> O), the disagreement is

the most noticeable. The letters used by various authors to

denote these resonant modes are EH and HE [13], [14];

TED, TE~, TM~, and TM~ [15]; HEM [16]; and HEH

and HEE [17]. The subscripts are usually two integers

followed by symbol the 8 [16], [18] or p [2], but also

fractions [13], and combination clf three integer subscripts

plus three integer superscripts [14] have been used. The

only feature common to all these notations is that the first

subscript is used to denote m, the azimuthal variation

number from (7) and (8).

The presence of several dielectric regions such as air,

dielectric resonator, support, and tuning objects makes the

field distribution too complicated for a complete descrip-

tion in terms of three indices. For example, the field plots

of the lowest five TMO modes in the shielded dielectric

resonator [19] show that any use of three indices leads to

contradictions, even for the relatively simple m = O case.

It appears that a simple solution to this dilemma is using

only two integer indices instead, as first proposed in [5]

and [17]. The first index should be the azimuthal modal

index m; the second index, n, should be an integer,

starting with n = 1 and counting the resonant frequencies

of various modes in ascending order for the specified value

of m. When the frequencies are obtained from an eigen-

value problem, such as in the FIT, the eigenvalues are

already arranged in ascending order by computer, and the

numbering is unambiguous.

As far as the choice of letters is concerned, the contro-

versy stems largely from the dual. meaning of the letter H.

Some use “H” to denote the hybrid modes, others use it to

denote the transverse electric modes. The controversy can

be avoided if one returns to the original IRE standard [20],

which classifies four categories of guided waves: TEM

(transverse electromagnetic), TE (transverse electric), TM

(transverse magnetic), and HEM (hybrid electromagnetic).

Applied to the rotational cavities containing dielectric

resonators, the resonant modes should thus be denoted

TEO~, TMO~, and HEMnm.

VIII. SOLUTION EXAMPLES

The cavity from Fig. 3 was analyzed by FIT using a

uniform grid of 17X 31 nodes, the grid step being 0:427

mm. The geometrical errors due to the finite grid dis-

cretization are also indicated in the figure. Eigensolutions

for the TE and TM modes, and the HEM modes with
m =1, 2, and 3, have been obtained. The same cavity was
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TABLE II
MEASUREDAND COMPUTEDRESONANTFREQUENCIES

OF THE CAVITY IN FIG. 4

I Frerwencv in GHz I Relative

I Comuuted I Measured I Error in %

TEo I 7.037 6.943 +1.35

I ! !

HEMII 8.742 8.694 +0.55

I I I
HEM12 8.897 8.905 -0.09

I 1 1

TMol 9.296 9.185 +1.21

I 1 I

HEM21 10.605 10.558 +0. 45

! I f

TM02 11.113 10.943 +1.55

I I I
HEM13 11.226 11.184 +0.38

~EOZ 11.391 11.316 +0.66

--------- ------------
-.. .-----

I -.

.
$

/’
.. . ..-

------
----

--------

[

_------”
---

---------
------------- --

I
Fig. 4. Electric (solid) and magnetic (dashed) field lines for the HEMII

mode in the cavity of Fig. 4.

then measured using a HP841OA network analyzer and a

HP8672A synthesized signal generator. The predicted and

measured resonant frequencies, and their relative differ-

ences, are given in Table II. The predicted and measured

resonant frequencies of the lowest 12 resonant modes

agree within 1.5 percent. Taking into account that the

cavity coupling mechanism distorts the rotational shape

and that the discretization error of certain dimensions in

Fig. 3 is as high as 6 percent, the difference can be mainly

attributed to the imperfections of the experimental, rather

than numerical, model.

The sample field distributions for the hybrid modes in

this cavity are given in Figs. 4 and 5. It maybe noted that

the electric field lines do not show sudden change of

direction at the interfaces of different dielectric materials,

I--------”-------’/--. -....”.. “!

,’ ,/, ,. --– -- ..:
L ---

t----... +.p+’ ,,?-

2
t~:;~,,,’:8.- ,, ,’,, ,:

--------- - !,
,, ,’”,

..” ,’ ,1 ,, ,

~

,/’ ,, , ;----------
,., ,. ,, !’--- ,., ,,!

------------- .- , ‘..- ,., ,,

[

. . . . . . . . ..- ---..=. ,.’
. . . . . . . . ..- ----- . .
. . . . . . . . ..- --------

I
Fig. 5. Electric (solid) and magnetic (dashed) field lines for the HEM13

mode in the cavity of Fig. 4. Note the spiraling behavior of the field

inside the dielectric resonator.

but rather a gradual change. The reason for this behavior

is the finite size of the discretization grid utilized in the

solution. The computer-generated field plots are con-

structed by using the second-order Runge–Kutta proce-

dure, whereas the local field inclination is obtained by

interpolating between nearest data points [12]. Therefore,

one cannot expect the field lines to display a sudden

change of direction within a distance smaller than the cell

size A. In order to obtain a sharper transition in the field

line directions, one would have to decrease the cell size,

with the consequence of increasing the matrix size, and

therefore increasing the computer time needed for obtain-

ing the eigensolutions.

An unusual modal field pattern can be seen in Fig. 5,

which depicts the mode HEM13. The field lines of this

mode exhibit localized spiraling behavior within the dielec-

tric resonator. Such behavior cannot be found in the

cavities filled with homogeneous dielectrics, and it appears

to be a novel phenomenon, related to the inhomogeneity of

the dielectric material within the cavity. The same HEM13

pattern has been obtained using the magnetic field and the

electric field FIT formulations, the two being entirely

different matrix generation procedures, so that it is be-

lieved to be correct.

The computation of the unloaded Q factor, including

both dielectric and conductor losses, is straightforward,

because the eigenvectors of each mode contain information

on the field distribution within the cavity. The entire loss is

obtained by numerical integration over the cavity volume

and surface. A verification of the procedure is next de-

scribed for a hollow cylindrical cavity of radius 5 cm and
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height 7 cm. Assuming a copper conductivity of 5.8.107

S/m, the theoretical resonant frequency of the mode TE1ll

is expected to be 2.77184 GHz [7, p. 214], and the conduc-

tor Q factor to be Q,= 23787 [7, p. 257]. Using the square

grid with 10x 14 elements of size 5 mm, the resonant

frequency obtained by the FIT is 2.76839 GHz and the

corresponding QC = 24605. Therefore, even with such a

small number of cells, the FIT provides a 0.1 percent

accuracy for resonant frequency and a 3 percent accuracy

for QC factor.

IX. CONCLUSION

The finite integration technique (FIT) has been em-

ployed for the numerical solution of rotationally symmet-

ric cavities containing dielectric resonators. The eigen solu-

tion of the matrix provides the resonant frequencies and

the associated field distributions for a prescribed az-

imuthal modal number rn. As the eigenvalues are arranged

in ascending order, the numbering of the eigenvalues can

be conveniently used as the second subscript of the modal

nomenclature. The modes are therefore denoted as TEo~,

TMOH, and HEM...

The matrix eigenvectors are used as input data for

computer-generated modal field patterns, enabling one to

identify the regions of strong or weak field and predict the

coupling or tuning effects. Unloaded Q factors have also

been evaluated, indicating the individual contributions of

losses in the metal and the dielectric to the overall Q

factors.

In comparison with the commonly used mode-matching

numerical procedures, the FIT offers the following advan-

tages: (1) the matrix elements are independent of fre-

quency; (2) the matrix elements do not contain any higher

functions (such as Bessel functions); (3) no axial symmetry

in the cavity is required, and (4) no prior knowledge of

regional modes (e.g. complex modes) is required, so that

the possibility of missing any resonances is reduced. The

drawbacks of the FIT are: (1) the need of handling large

sparse matrices and (2) the fact that in the present formu-

lation the matrix is not symmetric and not banded, which

slows down the numerical eigensolution procedure. Future

efforts will be directed toward alleviating the latter incon-

venience [21].
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