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Analysis of Dielectric Resonator Cavities
Using the Finite Integration Technique

JOVAN E. LEBARIC, MEMBER, IEEE, AND DARKO KAJFEZ, SENIOR MEMBER, IEEE

Abstract —Resonant modes in shielded dielectric resonators are studied
by a numerical technique which yields the resonant frequencies, modal
field distribution, and Q factors of various resonant modes, including the
hybrid modes. The technique employs field discretization by virtue of dual
electric and magnetic grids and allows for a direct numerical solution of
the integral form of Maxwell’s equations for specified boundary condi-
tions. The details of the matrix formulation are explained on an example
of the cavity subdivided into a grid consisting of 3X3 electric cells. A
modal field plot exhibiting a spiraling behavior has been observed.

I. INTRODUCTION

IGOROUS NUMERICAL solutions for the electro-
magnetic field inside resonant cavities containing di-
electric resonators have traditionally been obtained by the
mode-matching procedures, and more recently, by the
finite-clement procedures. A review of most frequently
used procedures can be found in [1]. The present paper
will describe an alternative procedure, called the finite
integration technique (FIT), which is particularly conve-
nient when the cavity volume is filled with inhomogeneous
dielectrics. The procedure has a similarity to a finite differ-
ence method, such as that used in [2], but has the advan-
tage that the interface between different dielectric media
does not require any special programming considerations.
The FIT is a numerical technique for direct solution of
Maxwell’s equations [3]-[6]. The technique is based on the
integral form of Maxwell’s equations for time-harmonic
electromagnetic fields in lossless linear media:

$E-di=~ jo [[B-d5
9Sﬁ-df=jwf/5-ds_’
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supplemented by the constitutive relationships:

D=¢E

(5)
(6)

The permittivity € and the permeability p of linear,
isotropic media are scalar functions of position. The equa-
tions (1) to (6), subject to the perfect-electric-conductor
boundary conditions, constitute the boundary value prob-
lem to be solved numerically, for the specified geometry
and media distribution. Extensions to domains with small
media and wall losses can be made using standard pertur-
bational techniques [7].

This paper describes the systematic discretization of
Maxwell’s equations which leads, for source-free domains
involving isotropic media, to an equivalent standard alge-
braic eigenvalue problem. The FIT solution is inherently
free of nonphysical, “spurious” modes, known to plague
the finite element solutions [8], since the divergence equa-
tions are incorporated into the eigenvalue problem formu-
lation from the onset.

As the resonant frequencies of the lossless cavity are
obtained from the real eigenvalues, arranged in ascending
order, there is no danger of overlooking one of them. In
the mode-matching technique, it is known that some of the
resonant frequencies may be overlooked, if the complex
modes are not included [9].

An important convenience of the FIT is the freedom of
rearranging the distribution of dielectric materials within
the cavity by simply modifying the input data of the
computer program.

B=pH.

II. VOLUME AND FIELD DISCRETIZATION

The simultaneous volume and field discretization is
specifically tailored for Maxwell’s equations by defining
“dual” electric and magnetic grids. The use of dual grids
[10] provides for the coupling of the electric and magnetic
fields, expressed by the curl equations of Maxwell.

The cylindrical coordinate system (r, ¢, z) is a natural
choice for problems with rotational symmetry, noting that
this property implies here not only the rotational symme-
try of the problem geometry but also the invariance of
media parameters with the angle of azimuth ¢. Fig. 1
illustrates two adjacent elementary volume cells, one elec-
tric and one magnetic, and their respective field nodes. The
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electric cell

Ez(r,z)cos(mdo+
mag)

magnetic cell

Fig. 1. Relative position of an adjacent electric and magnetic cell.

two cells, each representing its respective grid, are spatially
shifted by Ar/2, A¢/2, and Az /2. The permittivity e is
considered constant within an electric cell, but may vary
from one electric cell to another in an arbitrary manner.

Field components are assigned to field nodes, residing at
the centers of their respective cell sides: electric field
components to the electric cells and magnetic field compo-
nents to the magnetic cells. All nodal field components, as
evident from Fig. 1, must have one of the three coordinate
directions, that is, must be r-directed, ¢-directed, or z-
directed. The electric and magnetic fields are thus, by
virtue of dual grids, simultaneously “sampled” and re-
solved into their orthogonal components. Also, the conti-
nuity of tangential field components across the dielectric
interface is automatically imposed because the field com-
ponents are shared by the adjacent volume cell, which may
represent a different medium.

III. MoDAL EXPANSION

A three-dimensional interior electromagnetic boundary
value problem with rotational symmetry can be reduced to
an equivalent two-dimensional problem using Fourier se-
ries expansion with respect to the angle of azimuth ¢.
Linear combination of harmonic functions must be used
for anisotropic media to accommodate the coupling of
“degenerate” modes [11], while it is sufficient to use only
one harmonic function, either sine or cosine, for isotropic
media and uniaxial anisotropic media. For the later two
the solution may be written as [5]

E(r,¢,7) = i;:o[fEm,(r,z)cos(mq:)

§

+¢E,,(r,z)sin(m¢)+ ZE,, (r, z)cos(mq))] (7)

H(r,¢,z) = z=:o [i*‘Hm,(r, z)sin(me)
oH,,,(r,z)cos(me)+ £H, (7, z)sin(m¢)].

1741

The above expansion is referred to as the modal expansion
and the integer m is referred to as the mode index. The
main benefit of this expansion is the ability to integrate
analytically with respect to the angle of azimuth ¢ and
thus reduce the original three-dirnensional problem to an
equivalent two-dimensional problem.

'TV. DISCRETIZATION OF CURL AND DIVERGENCE
EQuATIONS

The integral forms of the curl equations of Maxwell (1)
and (2) involve line integrals of E and H and surface
integrals of B and D. The surface of integration is a cell
face, its circumference being the contour of integration for
the corresponding line integral. Integral forms of the diver-
gence equations of Maxwell (3) and (4) involve surface
integrals over the closed surfaces of elementary volume
cells.

Discretization of the line integrals is based on the as-
sumption that a field does not vary extensively along a side
of a cell in either radial or axial direction, and thus can be
approximated as being constant and equal to the field
nodal value at the center of that cell side (piecewise-con-
stant approximation). The surface integrals are discretized
assuming that the flux densities do not vary over the
respective cell faces, in either the radial or the axial direc-
tion, but they do vary, in the prescribed harmonic fashion,
with the angle of azimuth ¢.

The curl equation (1) for the shaded electric cell face
(r=const “plane”) in Fig. 1 can be discretized in the
following manner:

AzE,(r, z)[cos(moy + mAp)—cos(meg)]
+ r[E¢(r, z=Az/2)— E,(r,z+Az/2)]

-f¢O+A¢sin(m¢) dp
%o
=— jolAz(1/2)[u(r,z—Az/2)+ u(r,z+ Az /2)]

H.(r,2) /:’”%in(m) dé. (9)

After the analytic integration has been carried out and the
common terms have been canceled, the following expres-
sion is obtained:

rE,(r,z—Az/2)—rE,(r,z+Az/2)— AzmE,(r, z)

=— jwlAzrp,(r,z)H,(r,z) (10)

where the
duced:

p(r,z)=0,2)u(r,z—Az/2)+p(r,z+ Az /2)].
(11)
Following the same procedure, the curl equation (1) can be

discretized for the electric cell faces in ¢ = const and
z = const planes.

“averaged” media parameter has been intro-
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For ¢ = const planes,
Ar[E,(r.z+Az/2)— E,(r,z — Az/2)]
+ Az[E,(r—Ar/2,2)— E,(r + Ar/2,z)]
= — jolArAzp,(r,z)H,(r,z). (12)
For z = const planes,
ArmE,(r,z)+(r+Ar/2)E,(r +Ar/2,z)
——(r—Ar/2)E¢(r—Ar/2,z)
=— jolArrp (r,z)H,(r,2).

(13)

The discretized equations for the curl equation (2) are
obtained by duality, resulting in three additional equations
for the components of the magnetic field intensity.

Discretization of the divergence equations requires the
expressions for the surface integrals over the six faces of
electric and magnetic cells. These integrals have already
been obtained for the right-hand sides of the discretized
curl equations. Adding them algebraically with the refer-
ence direction into the cells, one obtains from divergence
equation (3) applied to the magnetic cells

mArAze,(r,z)E (r,z)+ Az [(r = Ar/2)e, (r — Ar/2,z)
E(r—Ar/2,z)—(r+Ar/2)e,(r+ Ar/2,z)
-E(r+Ar/2,z)] + Arr[e,(r,z— Az/2)
E(r,z—Az/2)— ¢ (r,z+Az/2)E,(r,z+ Az /2)]
=0. (14)

A similar relationship can be obtained for the components
of the magnetic field by applying divergence equation (4)
to the electric cells. After rearranging, the ¢-directed field
components can be expressed in terms of the radial and
axial field components:

£ -1 [r—Ar/2 A/
r.) = s | P (= /2,0
r+Ar/2
-E,(r—Ar/2,z)—Te,(r+Ar/2,z)

,
-E(r+Ar/2,z)+ -A——ez(r, z—Az/2)E,(r,z—Az/2)
z

——&':Z—ez(r,z+Az/2)EZ(r,z+Az/2)] (15)

Hq)(r, z)
-1 r—Ar/2
= (7 2) o u,(r—Ar/2,z)H,(r—Ar/2,z)
r+Ar/2
- —Ar———,u,(r +Ar/2,z)H (r +Ar/2,z)
+ Lptz(r, z—Az/2)H (r,z—Az/2)

Az
r
—A—uz(r,z+Az/2)Hz(r,z+Az/2) . (16)
z

The physical meaning, of the last two equations is that the
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Fig. 2. Discretization of a cavity using (3 X 3) electric cells. Note that
each cell is filled with different dielectrics.

field components for any given cell are not all indepen-
dent, and may not be treated as such, if the divergence
equations are to be satisfied as well. The above equations
are referred to as the zero-divergence condition, since the
divergence equations for media free of charges have been
used. Imposition of the zero-divergence condition will be
accomplished by eliminating the ¢-directed fields from the
curl equations and formulating an algebraic eigenvalue
problem in terms of radial and axial field components
only. In this manner, the total number of unknowns is
reduced by about one third.

Discretized curl and divergence equations are further
simplified if uniform discretization grids are employed:
Ar=Az = Al Introducing the normalized radial distance
r=r/Al and the normalized angular frequency w,:

wAl
w,=—— (17)
¢

the following identities are obtained:
wAley=w,Y, (18)
(19)

where Z, and Y; are the intrinsic impedance and admit-
tance of free space.

wAlp,=w,Z,

V. MATRIX FORMULATION

The matrix equations are probably best introduced by
means of an example. To this purpose a cylindrical con-
ducting cavity with radius equal to its height, discretized
using three electric cells in the radial and three electric
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cells in the axial direction, is given in Fig. 2. Each electric
or magnetic cell has been assigned a different relative
permittivity or permeability. Also indicated in the figure
are the positions of the electric and magnetic nodal field
components. The boundary conditions on the perfect elec-
tric conductor are imposed by setting the tangential elec-
tric and normal magnetic field components to zero at the
metallic boundaries. The conditions for the field compo-

nents on the axis of symmetry (z axis) are determined by

the field periodicity with the angle of azimuth ¢. For the
modes with m=0 (no field variation with ¢), the r-
directed field components on the z axis must be zero,
whereas for the modes with m >0 the z-directed field
components on the z axis must be equal to zero.
Algebraic equations representing the discretization of
the curl and divergence equations can be written for this
3 X 3 cavity as follows. From curl equation (2), for r = const

-1 0 0 1 0 0 0 0 0
0 -1 0 0 1 0 0 00
6 0 -1 0 0 1 0 0 0
6 0 0 -1 0 01 0 0
0 0 0 0 -1 0 0 1 0
0 0 0 0 0 ~1 0 0 1

[1/2 0 0 0 0 0
0 372 0 0 0 0
0 0 5/2 0 0 0
0 0 0 12 0 0
0 0 0 0 3/2 0
0 0 0 0 0 5/2
0 0 0 0 0 0
0 0 0 0 0 0

| 0 0 0 0 0 0

Hy,

Hy, L ]

H,; H, 12 0

H,, H, 0 32

Hys [+m Hey = jw Y, 0 0
5 Hz4 Jw, Xy 0 0

Hys H, 0 0

Hy H, 0 0

Hy -

_H¢9—

_(€1+e4)/2 0 0
0 (e3+¢5)/2 0
0 0 (‘3/‘6)/2
0 0 0
0 0 0
0 0 0

—
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planes, one obtains
€ +ey

(1/2) H,,—- (1/2) Hy+mH, = Jjw,Y5(1/2) 5 E,
(3/2) Hys = (3/2) Hyp + miy = jobo(3/2) 2 B,
(5/2) Hyg— (5/2) Hyat mll = o Yo(5/2) 22
(1/2) By = (1/2) Hyy mby= o Yo(1/2) 4
(3/2) Hyw = (3/2) Hoys + mHs = o 13(3/2) - E,q
(5/2) Hyo = (5/2) Hyo + mHo= jo, Xo(5/2) 2“2
(20)

This system of equations can also be written in the matrix
form:

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

/2 0 0

0 372 0

0 0 5/2]

0 0 0 0 |

0 0 0 0

52 0 0 0

0 1,2 0 0

0 0 3,22 0

0 0 0 5/2]
0 0 0 ] [E, ]
0 0 0 E,
0 0 0 E, . (21)

(ej+¢€,)/2 0 0 E,
0 (e5+¢€5)/2 0 E,;
0 0 (€6t €9)/2 | | £ |
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In a compact notation, (21) becomes

ngrDlzplh¢> + m|h2> = jwnYODrErDcrler>

7

(22)
where the boldface symbols denote square or rectangular
matrices with real elements, and the symbol | } denotes
column matrices with real elements. Likewise, the curl
equation (2), written for ¢ =const and z = const planes,
results in

(23)
(24)

Crlz;lhr> + Cz}:plhz> = jwnYODs¢|e¢>
- mlhr> + C;zDrﬁplh¢> = jwnYODrezDezle:>'
Proceeding in an analogous manner, curl equation (1)
results in
Crfﬁle,> +Cle,)=— jwnZOD,L¢|h¢>

(25)
(26)
(27)

Three classes of matrices are recognized in (22) to (27):
connection matrices C,f,, representing the discretization
of line integrals; diagonal position matrices DJ,, repre-
senting the radial distances of nodal field components; and
diagonal media matrices D,,, representing the averaging
of media parameters for adjacent cells involved in dis-
cretization of surface integrals.

In an analogous manner, the divergence equations (3)
and (4) result in the following two matrix equations:

ch¢|e4>> + Criz’DrerDerler> + Czethi.'Dezlez> =0 (28)
.y =0. (29)

mler> + qusz;s|e¢> = jwnZODr];Dy.zihz>'

Fe

mD;L¢lh¢> + Cr}(IIDrhrDurlhr> + Cz}ZiDhD

rzpz

For cavities which do not contain magnetic materials, the
media matrices D,, and D,, are replaced by the scalar p,.
Likewise, for the air-filled cavities, D,, and D,, are re-
placed by €,. The connection matrices for the divergence
equations are related to the connection matrices for the
curl equations, as shown in [11]. The example in Fig. 2

there are only (3 X 3) electric cells, but any larger number
of cells can obviously be formulated in like manner, result-
ing in matrix equations of the same form as (22) to (29).

VI. EIGENVALUE PROBLEM FORMULATION

The first step toward the electric field formulation is to
express the magnetic field vectors in terms of vectors of
electric field components, from equations (25) to (27):

) = o7 D (DE) [ Dglegy = mle)] (30)

o) = 7 Dus' [ Ciler) + Cile.)] (31)
S e

]hz> = mDuzl(Drh;) [mler>+ C¢zDr4>|e<1>>] * (32)

The above is next substituted into (23) and (24). The
resulting expressions involve the vector of ¢-directed elec-
tric field components, which can be expressed, from the
zero-divergence condition (28), in terms of the radial and
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axial electric field vectors to give the following partitioned

matrix equation:
} [:_Z_i_] =0. (33)

43, | 47,
______ —
Air A_sl
(34)

Matrices A%, are defined as follows:
(35)

(36)
~@D2D,,. (37)

n—rz

D’ D

rz €z

D:D,, P 0

2ne
- wnDerw

e _ ¢k p-1ie an-1{ pr) !
A¢,=CLDLDCe + mD, (D))

e _rhphp-lce
ArZ - C¢rDr¢DlL¢ CZ¢

e _ gh hpn—1ge
AZ" - C¢ZD"¢D}L¢ C"P

e — hphp-le -1 pk) !
A, =CLDLDCs +mD (D))

Equation (33) is recognized as the standard eigenvalue
problem if written in one of the following forms:

[4°—w2D]le,.y =0 (38)

[(D*) " ac = &2 |le,,) =0. (39)

The resulting matrix is very sparse, with at most nine
elements per row, regardless of the matrix size.

A dual procedure can be carried out for the magnetic
field formulation. The result is a standard algebraic eigen-
value problem of the form

[4% ~ w2D"]|h,,y =0 (40)

or

(41)

The two eigenvalue problem formulations for m >0
modes are redundant, in the sense that the curl and diver-
gence equations can be used to recover all of the field
vectors once either radial and axial electric or radial and
axial magnetic eigenvectors have been obtained.

An eigenvalue formulation for the modes with no field
variation along the angle of azimuth ¢ (modes with m = 0)
can be obtained from the curl equations only, without use
of the zero divergence condition. The TE cavity modes are
obtained from the following eigenvalue problem:

[(p") " a? = w21 |jh,) =0,

[45 - @it ]le,y =0 (42)
with matrix 4§ given by
A= 'chp (ph) ¢y,
+DICLDIN(D)) T CLD,. (43)

A dual procedure yields the eigenvalue formulation for the
TM, modes:

[Al— w2 ||n,y=0 (44)

h_p-lcepn-1(pe\ et ph
AO—D;uj) Cr¢D(z (Drr) C¢rDr¢

e -1
+D'Ce, D (DL) T CLD),. (45)

o€z rz
Therefore for a given number of nodes in a particular

cavity, modes with m = 0 are obtained by solving a matrix
of half smaller size than the one for mode with m > 0.
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TABLE 1
NUMBER OF ELEMENTS IN THE FIELD EIGENVECTORS, WHERE M 1S THE
NUMBER OF RADIAL CELLS AND N 18 THE NUMBER OF AXIAL CELLS

m=0 ‘m >0
modes modes
Je > M(N - 1) M(N - 1)
|e¢> M-1)@=-1) | M-1HE =1
[e,> | MN M- LN
[hr> M- N MN
|h¢> MN MN
|h> MN - 1) M(N - 1)

| T

] 8(+0.2%)

fe—9(-0.22)—p %
T 8(+0.2%)
. €r=37.3.- .
15(-3%)
47 (-6, 634
€r=3,78

't—— 17(-1,8%)
|

Discretization of the cavity used in experiments, and the corre-
sponding percentage errors.

—

Fig. 3.

To-illustrate the size of the resulting matrix problem, we
consider a cavity with M electric cells in the radial direc-
tion and N cells in the axial direction. The corresponding
number of elements for the electric and magnetic field
vectors. is given in Table I. For the example from Fig. 3,
M =17 and N =31, |e,) vector has 480 components, so
that the matrix which must be solved in the case of the
TE,, modes is 480X 480. For any of the hybrid modes with
m >0, the matrix size for the same cavity increases to
1037 X 1037.

When the numerical solution of the eigenvalue problem
has been obtained, the eigenvalues yield the resonant fre-
quencies of the modes, and the eigenvectors contain the r
and z components of the field. Typically, only the lowest
five to ten modes for each m are of practical interest.

The field lines of the various resonant modes are plotted
on an x—y plotter controlled by a personal computer
using the procedure described in [12]. Knowledge of the
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field distribution in the cavity allows a detailed computa- -
tion of the unloaded Q factor, taking into account the
dielectric losses as well as metal wall losses.

VIL

The eigenvalue formulation inherent in the finite inte-
gration technique provides an opportunity of a mode
nomenclature for resonant cavities with rotational symme-
try, containing the dielectric resonators, in a straightfor-
ward way. Until now, a number of authors have attempted
miscellaneous notations, but ncne have been generally
accepted. For hybrid modes (m > 0), the disagreement is
the most noticeable. The letters used by various authors to
denote these resonant modes are EH and HE [13], [14];
TEp, TE,, TM, and TMy; [15]; HEM [16]; and HEH
and HEE [17]. The subscripts are usually two integers
followed by symbol the .8 [16], [18] or p [2], but also .
fractions [13], and combination of three integer subscripts:
plus three integer superscripts [14] have been used. The

MODE NOMENCLATURE

" only feature common to all these notations is that the first

subscript is used to denote m, the azimuthal variation
number from (7) and (8).

The presence of several dielectric regions such as air,
dielectric resonator, support, and tuning objects makes the
field distribution too complicated for a complete descrip-
tion in terms of three indices. For example, the field plots
of the lowest five TM, modes in the shieclded dielectric
resonator [19] show that any use of three indices leads to
contradictions, even for the relatively simple m = 0 case.

It appears that a simple solution to this dilemma is using
only two integer indices instead, as first proposed in [5]
and [17]. The first index should be the azimuthal modal
index m; the second index, n, should be an integer,
starting with n =1 and counting the resonant frequencies
of various modes in ascending order for the specified value
of m. When the frequencies are obtained from an eigen-
value problem, such as in the FIT, the eigenvalues are

"already arranged in ascending order by computer and the

numbering is unambiguous. ,

As far as the choice of letters is concerned the contro-
versy stems largely from the dual meaning of the letter H.
Some use “H” to denote the hybrid modes, others use it to
denote the transverse electric modes. The controversy can
be avoided if one returns to the original IRE standard [20],
which classifies four categories of guided waves: TEM
(transverse electromagnetic), TE (transverse electric), TM
(transverse magnetic), and HEM (hybrid electromagnetic).
Applied to the rotational cavities containing dielectric
resonators, the resonant modes should thus be denoted
TE,,, TM,,, and HEM,,,,

VIIL

The cavity from Fig. 3 was analyzed by FIT using a
uniform grid of 17 %31 nodes, the grid step being 0.427
mm. The geometrical errors. due to the finite grid dis-
cretization are also indicated in the figure. Eigensolutions
for the TE and TM modes, and the HEM modes with
m=1, 2, and 3, have been obtained. The same cavity was

SOLUTION EXAMPLES



1746

TABLE II
MEASURED AND COMPUTED RESONANT FREQUENCIES
OF THE CAVITY IN FiG. 4

i Frequency in CHz Relative
Computed | Measured } Error in %

TEqQ1 7.037 6.943 +1.35
HEM7y1 8.742 8.694 +0.55
HEMj 9 8.897 8.905 -0.09
TMo1 9.296 9.185 +1.21
HEMp1 10.605 10.558 +0.45
Moo 11.113 10.943 +1.55
HEMy3 11.226 11.184 +0.%8
TEg2 11.391 11.316 +0.66

Fig. 4. Electric (solid) and magnetic (dashed) field lines for the HEM,,;

mode in the cavity of Fig. 4.

then measured using a HP8410A network analyzer and a
HP8672A synthesized signal generator. The predicted and
measured resonant frequencies, and their relative differ-
ences, are given in Table II. The predicted and measured
resonant frequencies of the lowest 12 resonant modes
agree within 1.5 percent. Taking into account that the
cavity coupling mechanism distorts the rotational shape
and that the discretization error of certain dimensions in
Fig. 3 is as high as 6 percent, the difference can be mainly
attributed to the imperfections of the experimental, rather
than numerical, model.

The sample field distributions for the hybrid modes in
this cavity are given in Figs. 4 and 5. It may be noted that
the electric field lines do not show sudden change of
direction at the interfaces of different dielectric materials,

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 11, NOVEMBER 1989

Fig. 5. Electric (solid) and magnetic (dashed) field lines for the HEM,,
mode in the cavity of Fig. 4. Note the spiraling behavior of the field
inside the dielectric resonator.

but rather a gradual change. The reason for this behavior
is the finite size of the discretization grid utilized in the
solution. The computer-generated field plots are con-
structed by using the second-order Runge—Kutta proce-
dure, whereas the local field inclination is obtained by
interpolating between nearest data points [12]. Therefore,
one cannot expect the field lines to display a sudden
change of direction within a distance smaller than the cell
size A. In order to obtain a sharper transition in the field
line directions, one would have to decrease the cell size,
with the consequence of increasing the matrix size, and
therefore increasing the computer time needed for obtain-
ing the eigensolutions.

An unusual modal field pattern can be seen in Fig. 5,
which depicts the mode HEM,,. The field lines of this
mode exhibit localized spiraling behavior within the dielec-
tric resonator. Such behavior cannot be found in the
cavities filled with homogeneous dielectrics, and it appears
to be a novel phenomenon, related to the inhomogeneity of
the dielectric material within the cavity. The same HEM,,
pattern has been obtained using the magnetic field and the
electric field FIT formulations, the two being entirely
different matrix generation procedures, so that it is be-
lieved to be correct.

The computation of the unloaded Q factor, including
both dielectric and conductor losses, is straightforward,
because the eigenvectors of each mode contain information
on the field distribution within the cavity. The entire loss is
obtained by numerical integration over the cavity volume
and surface. A verification of the procedure is next de-
scribed for a hollow cylindrical cavity of radius 5 cm and
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height 7 cm. Assuming a copper conductivity of 5.8-107
S/m, the theoretical resonant frequency of the mode TE;,
is expected to be 2.77184 GHz [7, p. 214], and the conduc-
tor Q factor to be Q.= 23787 [7, p. 257]. Using the square
grid with 10X 14 elements of size 5 mm, the resonant
frequency obtained by the FIT is 2.76839 GHz and the
corresponding Q,=24605. Therefore, even with such a
small number of cells, the FIT provides a 0.1 percent
accuracy for resonant frequency and a 3 percent accuracy
for Q. factor.

IX. ConcrLusioN

The finite integration technique (FIT) has been em-
ployed for the numerical solution of rotationally symmet-
ric cavities containing dielectric resonators. The eigen solu-
tion of the matrix provides the resonant frequencies and
the associated field distributions for a prescribed az-
imuthal modal number m. As the eigenvalues are arranged
in ascending order, the numbering of the eigenvalues can
be conveniently used as the second subscript of the modal
nomenclature. The modes are therefore denoted as TE,,,
T™,,, and HEM,,,.

The matrix eigenvectors are used as input data for
computer-generated modal field patterns, enabling one to
identify the regions of strong or weak field and predict the
coupling or tuning effects. Unloaded Q factors have also
been evaluated, indicating the individual contributions of
losses in the metal and the dielectric to the overall Q
factors.

In comparison with the commonly used mode-matching
numerical procedures, the FIT offers the following advan-
tages: (1) the matrix elements are independent of fre-
quency; (2) the matrix elements do not contain any higher
functions (such as Bessel functions); (3) no axial symmetry
in the cavity is required, and (4) no prior knowledge of
regional modes (e.g. complex modes) is required, so that
the possibility of missing any resonances is reduced. The
drawbacks of the FIT are: (1) the need of handling large
sparse matrices and (2) the fact that in the present formu-
lation the matrix is not symmetric and not banded, which
slows down the numerical eigensolution procedure. Future
efforts will be directed toward alleviating the latter incon-
venience [21].
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